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Abstract: this paper outlines the way in which human can interact with wise things. It looks at different approaches 

of implementing the partial integration of human brain with smart playground; the ways of processing the voice 

input; fuzzy logic in text analyzing and non-strict commands input; what methods could be used to achieve full non-

touch control. 

Аннотация: в данной статье рассматривается возможность управления умными вещами через 

оператора. Здесь будут рассмотрены различные методы и подходы к частичной интеграции мозга 

оператора с умной площадкой; методы обработки голосовой информации; ленивые вычисления в анализе 

текста и нечетких голосовых команд; какие подходы позволят достичь полного бессенсорного контроля. 
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1. INTRODUCTION 

Today, building a non-touch control wise home system is a task of many years of effort. Thanks to the latest 

breakthrough in neurology and data mining, new approaches appeared which can cope with this problem.  

In this research, we have introduced a brand new way, in which wise home can be partially integrated with 

human brain using latest technologies in a field of brain-computer interface (BCI) and latest semantic recognition 

approaches based on fuzzy logic. 

The proposed model consists of two main parts – voice input and BCI input. Here, BCI is used as a trigger, which 

handles voice input. Voice input is divided into two step model, in order to reduce errors, which could happen during 

the recognition process. 

The rest of the paper is organized as follows: Section 2 

gives a general idea of wise home (playground) in conception of our model. Section 3 dives into a problem of 

controlling wise things with non-strict commands based on voice input. Section 4 describes a part of proposed model 

– semantic processing and recognition of non-strict voice commands. Section 5 introduce the second part of our 

model - an idea of using BCI in conception of our entire system and some integration notes. 

2. WISE PLAYGROUND 

By a «wise playground», we mean a mechanism, which represents a many-to-one interface for most smart things 

(Of course interface must not be abstract and have realization). The idea of embedding all things in ‘one point’ 

originally came from the rise of the internet and web2.0.It’s also known as IoT (internet-of-things).  

However, in original conception, there is no semantic rule or filter presented, and the main aim of such ground is 

nothing than exchange data between things and do simple automatization. Moreover, nowadays there is no point in 

such computer-based system, as most processes seem to be difficult to implement in a non-strict way. By saying 

“non-strict,” I mean flexible input and control. As a result, an operator must trigger some event-driven actions with 

exact command directly or thanks to special algorithms, which implements some self-learning based on operator 

input. It is also known as neural networks or expert systems (depends on the difficulty of the problem). General 

solution scheme is presented below (Fig.1) 

 



 
 

Fig. 1. General scheme of solution 

 

3. SEMANTIC PROBLEMS IN “WISE HOME CONTROLLING CONCEPTION” 

It is not a secret, that modern approach in controlling home is based on some non-strict input. For instance, it can 

be virtual reality, neuro interface, or voice input. Right now, the virtual reality seems to be the best choice. However, 

right now you need a special device to do such stuff. Therefore, using voice does not require any special interface.  

 As you may have figured out, there are several problems with voice input. The first one is converting the voice 

record to text. The second one is semantic rules. The problem is that all our things have special commands which 

trigger a specific event (For example command “toggle” will trigger lamp).Therefore, your voice input must be exact 

to command name. And the last one is to recognize the command in a general speech. In further chapters, we will 

discuss this issues and methods to come up with it. 

Fuzzy logic in text recognition 

Before we will talk about text processing itself, it is also important to understand the origin of characters 

manipulation. So, every character in the word is presented as a binary number system. For instance, the word “ride” 

in the binary system is 01110010 01101001 01100100 01100101. Then, if you try to equal this word with word 

“bird”, the computer will check this equality in the binary system. It is important to understand the behavior of word 

storing and representation, as you already know, that all words are processed as equality. But what, if I do not want 

to use a strict word in my recognition system? For solving this problem, we will use fuzzy logic. 

Fuzzy logic is an analytic approach that extends classic Boolean algebra. According to its rules, it can handle the 

partial truth, where the result is presented as a percentage. For instance, if I have 1100 and 1010 in my dictionary, I 

want to know the correlation between this dictionary and 1011. The system result may be 0.16 for 1100 and 0.84 for 

1011.  

As you see, it is a rather flexible system. However, more difficult word sequences (or just sentences) in 

dictionary – more problems in getting good results. For this purpose, I am using in my system only single words and 

phraseologisms.  Therefore, it seems as a piece of cake to cope with such data. But every thing may have several 

commands and what if there are more than 10 things? Remember command for every trigger for every thing seems to 

be a great problem. To resolve this issue, we will use synonyms for every command and classification algorithm. 

Some notes on classification 

A classification is an analysis approach that consists of predicting a certain outcome based on a given input. In 

order to predict the outcome, the algorithm processes a training set containing a set of attributes and the respective 

outcome, usually called goal or prediction attribute. The algorithm tries to discover relationships between the 

attributes that would make it possible to predict the outcome. Next, the algorithm is given a data set not seen before, 

called prediction set, which contains the same set of attributes, except for the prediction attribute – not yet known. 

The algorithm analyses the input and produces a prediction. The prediction accuracy defines how “good” the 

algorithm is. The sample from the previous chapter nicely covers this topic. 

 

Choosing algorithm 

There are two approaches that could be useful in solving a classification problem in our case: the first one is 

Naïve Bayes, and the second one is Levenshtein distance. 

 

Naïve Bayes itself represent a probabilistic model. The general type of Bayes model (1) is: 

(1)          𝑝(𝐶𝑘|𝑥) =  
𝑝(𝐶𝑘) 𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
 



 

While Levenshtein (2) is a math approach which search distance between two strings. The general form is: 

(of length |𝑎| and |𝑏| respectively) is given by  𝐿𝑒𝑣𝑎,𝑏(|𝑎|, |𝑏|)  where 

 

(2)          𝐿𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =  

{
 
 

 
 max(𝑖, 𝑗)

min {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖  ≠ 𝑏𝑖)

 

 

Where 1(𝑎𝑖  ≠ 𝑏𝑖) is the indicator function equal to 0 when 𝑎𝑖 = 𝑏𝑗and equal to 1 otherwise, and 𝐿𝑒𝑣𝑎,𝑏(𝑖, 𝑗) is the 

distance between the first 𝑖 characters of 𝑎 and the first 𝑗 characters of 𝑏. 

 

Let us check which method would better fit our problem. We will do this stuff by building up simple models with 

this two methods using R language. 

 

install.packages('e1071', dependencies = TRUE) 

install.packages('RTextTools', dependencies = TRUE) 

install.packages('vwr', dependencies = TRUE) 

 

library(e1071)  

library(RTextTools) 

library(vwr) 

 

#feed with patterns 

ride_data =  rbind(c('ride', 'ride'), c('beride', 'ride'), c('rider', 'ride') ) 

raid_data = rbind(c('turn', 'turn'), c('turner', 'turn'), c('turn on', 'turn') ) 

 

data = rbind(ride_data, raid_data) 

 

matrix= create_matrix(data[,1], language="english",  

removeStopwords=FALSE, removeNumbers=TRUE,  # we can also removeSparseTerms 

stemWords=FALSE)  

 

 

# train the model 

mat = as.matrix(matrix) 

classifier = naiveBayes(mat[1:6,], as.factor(data[1:6,2]) ) 

 

 

# test the validity 

test_case <- c('prize', 'ride') 

predicted = predict(classifier, test_case); predicted 

table(test_case, predicted) 

recall_accuracy(test_case, predicted) 

 

####levenshtein##### 

lev_perc <- levenshtein.distance(test_case[1], data) 

lev_perc <- 1 - lev_perc / 7 

lev_perc 

#get template name 

data[which(lev_perc == max(lev_perc))[[1]] ,2] 

#get accuracy 

max(lev_perc)[1] 

 

The output will be the following: 



 

> recall_accuracy(test_case, predicted) 

[1] 0.5  

 

#get template name 

[1] "ride" 

> max(lev_perc)[1]#get accuracy 

[1] 0.7142857 

 

The first one is Naïve Bayes – as you see, the less dictionary, the more inconvenienced results. 

The second – is Levenshtein. According to our algorithm, we are checking our origin input with every string in 

the dictionary and then get the most accuracy pattern. 

The conclusion is simple: Bayes is good in the case when we have an input, which is close to origin pattern. 

Furthermore, in our example, we use a word, which have a similar part to first origin pattern (“ride”), and beside this, 

the result is 0.5 and this is the unsatisfying result. Levenshtein instead shows the better result, which I supposed to 

get from the very beginning. So, for our purpose, Levenshtein seems to be the best choice. 

4. VOICE INPUT PROCESSING 

As we have already pointed out, voice recognition in some way may give an accurate result due some reasons: 

accent, noise, several voice sources and etc. Therefore, there is no point in recognition of command directly. As 

some triggers of different things may be similar or even equal, it is suggested to choose a thing first, and after a 

trigger for command of chosen thing. Therefore, there would be a two-step voice input (Fig. 2). For first input, we 

need a strict phoneme-based dictionary, which will help us to reduce output results. Let us assume that every 

phoneme item in our dictionary is a thing’s name. As for the second step – there would be a general google voice 

processing system. You may be interested, why we will not use the same idea, as in the first step. So, you command 

for a trigger may be a custom word, which goes out of general semantic rules. As a result, there is no phoneme rule. 

In addition, there is no general algorithm for processing word to phoneme (right now, thing’s name parsed to 

phoneme from prepared static dictionary, as a number of supported vendors is strict, such dictionary is a useful 

component in our system ). 

 

 
 

Fig. 2. Two step voice input 
 

Word-phoneme based speech recognition 

Natural language processing is a complex problem, which involves different approaches, methods and 

methodologies to discover. In our deals, we do not need natural processing as we split system to two steps – 

command for choosing thing (which is strict) and second for the command for chosen thing in the previous step. 

There are two approaches on which I paid attention mostly. The first one – is a mapping between real physical 

word and my pattern. The goal is clear – we have preloaded dictionary, so there is no need to implement any services 



for converting waves to text. The problem is that it have n-templates for our unique pattern, which means that results 

of your input will be decreased in as 1/n, where n – amount of templates for your pattern. As you see, the more 

difficult your keyword, the fewer chance you get the right result. Nevertheless, the second approach is more flexible 

as it uses phoneme data to construct the pattern. It is great, as we do not have any bind to the real word, which gives 

us the ability to use acronyms (custom words, which do not exist in a real dictionary). Thus, a text-to-speech 

approach using phones provides flexibility but cannot produce intelligible and natural speech, while a word level 

concatenation produces intelligible and natural speech but is not flexible. In order to balance between flexibility and 

intelligibility/naturalness, subword units such as diphones which capture essential coarticulation between adjacent 

phones are used as suitable units in a text-to-speech system. 

Given the sequence of words, the next step is to generate a sequence of phones. For languages such as English 

where the relationship between the orthography and pronunciation is complex, a standard pronunciation dictionary 

such as CMU-DICT is used. To handle unseen words, a grapheme-to-phoneme generator is built using machine 

learning techniques [Black et al., 1998]. 

Fetch template by phoneme recognition 

Here we are going to trigger events in a fluent style. In other words, next function (or step) will be executed as 

soon as previous will end. 

The following block-scheme below (Fig. 3) will describe the logic of our code (which is present above) 
 

 
 

Fig. 3. Phoneme recognition 

 

5. NEURO INTERFACE, BARIN WAVES AND EEG 

In the second chapter, we have already mentioned about neuro interface. In our conception, neuro interface is an 

EEG device, which will handle the certain state of an operator’s brain for the initialization of voice input purpose. 

Thanks to latest technologies, EEG has become available to the general audience. Don’t expect of recognition your 

thoughts. Right now, it’s impossible, because most artefacts are unique, and others depend on a specific brain. In 

Neurology, the term “artefacts” means a set of special algorithms, where main arguments are states of brain waves 

(alpha, beta, gamma, theta, delta). Nevertheless, there are few artefacts, which are general for most humanity. We 

will use some of them to handle an input event. For instance, when I am concentrating, the voice interface appear. 

This let us avoid sensor control, and for some social groups, it could be the only chance to control the wise home.  



For my aim, I have chosen the neurosky device. The main reason is that it have an only frontal sensor and it has a 

general headsets size. The idea lies behind a mobility, which means, that there is no need in special equipment, nor in 

the special gel for sensors. Under the hood, most dev companies pay most attention to device’s size, as there is no 

need in obtaining full brain map. So, working on the field of recognition using only frontal sensor seems to be 

demanded. 

eSence notes   

Neurosky provides their concentration and meditation algorithms out of the box. This technology is known as 

eSence. In this project, we use special settings for detecting a trigger event, so you need manually set concentration 

and meditation levels. 

6. CONCLUSIONS 

In this paper, we proposed a new modeling strategy based on voice input and EEG trigger like system. The 

proposed method solves problems with controlling wise home via voice and introduce new approaches in integration 

brain-computer interface with wise things. Also, we have outlined problems in fuzzy logic recognition voice systems 

in context of BCI systems, which haven’t been discussed before. Furthermore, we have done some research in a field 

of semantic and phoneme-grapheme voice-pattern recognition. For future work, we plan to extend our work by 

modeling and predicting some EEG artefacts, which are responsible for triggering voice controller in our complex 

system. We will do some research in a field of using brain waves and issues, which may appear due recognition 

process (such as building deep neural network, finding general artefacts and adopting neural network for different 

users). 

Finally, I would like to admit, semantics and voice control are two difficult problems, which involve not only 

«strict» algorithms and certain answer, but also a fuzzy logic, or even a complex expert system. Thereby, in future 

research, it is planning to pay most attention to pos-tagging, natural language processing and Neurology (especial 

artefacts). 
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